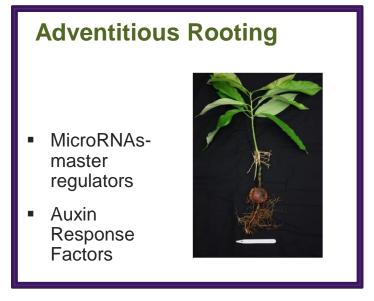


Mitter Lab: Innovating Avocado We love Challenges.... We love Avocado...


Prof Neena Mitter Director, Centre for Horticultural Science, QAAFI, The University of Queensland, Australia n.mitter@uq.edu.au

Innovating Avocado – The list keeps on growing...

Avocado: The world's trendiest #food....

Avocado: NOT the world's trendiest #genome

NCBI S	Avocado	Banana	Brussels Sprout	Tomato	Rice
Nucleotides	2,185	267,558	237,763	92,228	769,512
Proteins	1,589	46,665	171,444	164,349	1,284,969
Genes	131	35,752	66,580	35,553	97,447
Genomes	0	3	1	4	22
Pubmed	3,257	14,606	19,500	49,641	120,316

The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation

Martha Rendón-Anaya^{a,b,1}, Enrique Ibarra-Laclette^{a,c,1}, Alfonso Méndez-Bravo^{a,d}, Tianying Lan^e, Chunfang Zheng^f, Lorenzo Carretero-Paulet^g, Claudia Anahí Perez-Torres^{a,c}, Alejandra Chacón-López^a, Gustavo Hernandez-Guzmán^{a,h,i}, Tien-Hao Chang^e, Kimberly M. Farr^e, W. Brad Barbazuk^j, Srikar Chamala^k, Marek Mutwil^l, Devendra Shivhare^l, David Alvarez-Ponce^m, Neena Mitterⁿ, Alice Haywardⁿ, Stephen Fletcherⁿ, Julio Rozas^{o,p}, Alejandro Sánchez Gracia^{o,p}, David Kuhn^q, Alejandro F. Barrientos-Priego^r, Jarkko Salojärvi^l, Pablo Librado^{s,t}, David Sankoff^f, Alfredo Herrera-Estrella^a, Victor A. Albert^{e,l,2}, and Luis Herrera-Estrella^{a,u,2}

HASS Genome Sequencing and Annotation

- Leaf Sample collected from Mother Hass tree located at Maroochy research station.
- Genomic DNA was extracted, Quantified and Quality Assured.
- Sent for Sequencing long read PacBio
- Long read sequencing (Nanopore) may be added.
- Genome scaffolding into chromosomes using Hi-C.
- Genome annotation (using transcriptome information).
- > Development of an improved publically available Browser for avocado community

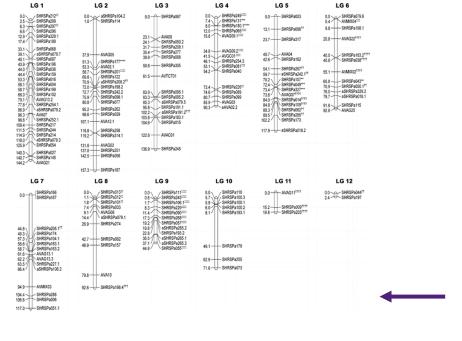
Sequencing germplasm (>40)

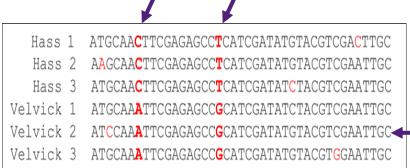
Cultivars	Propagated as	
A8	Rootstock	
A10	Rootstock	
Ashdot	Rootstock	
Barr Duke	Rootstock	
Belle Prima	Scion	
Bounty	Rootstock	
Carmen Hass	Scion	
Duke7	Rootstock	
Dusa	Rootstock	
Edranol	Scion	
Esther	Scion	
Fuerte	Scion	
Gem	Scion	
Gwen	Scion	
Hass	Scion	
Hazzard	Scion	
Kidd	Rootstock	
Lamb Hass	Scion	
Latas	Rootstock	

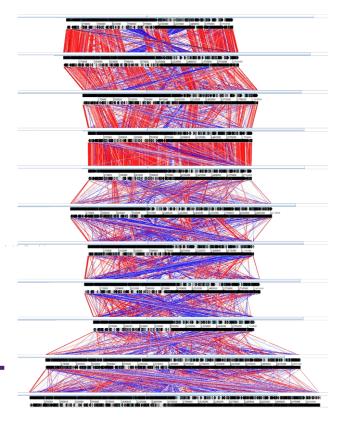
Samples collected from available cultivars in Australia.

Maluma:

- > Total Reads Sequenced: 84 Million (84,389,829)
- For All samples At-least 99.9% of reads passed QC (99.95 for Maluma)
- > 98.6% of reads Mapped to Available Hass Genome

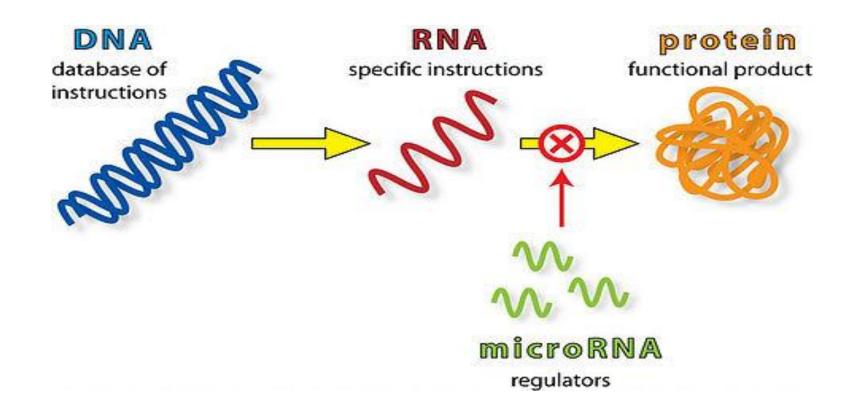

Cultivars	Propagated as	
Maluma	Scion	
Nabal	Rootstock	
Parida	Rootstock & Scion	
Pinkerton	Scion	
Plowman	Rootstock	
Reed	Rootstock & Scion	
Sharwil	Scion	
Shepard	Scion	
SHSR-04	Rootstock	
Simmonds	Scion	
Skhirate	Scion	
Thomas	Rootstock	
Tora Canyon	Rootstock	
Velvick	Rootstock	
Whitsell	Scion	
Wurtz	Scion	
Zutano	Rootstock & Scion	
Topa Topa	Rootstock	





What's Next – CULTIVAR SPECIFIC MARKERS

- Find the minimal set of markers required to uniquely identify specific cultivars.
- Develop an easy, lab-based assay for cultivar assignment
- Unique genetic tag for each cultivar



MicroRNAs in Avocado What are miRNAs?

microRNAs and Avocado-

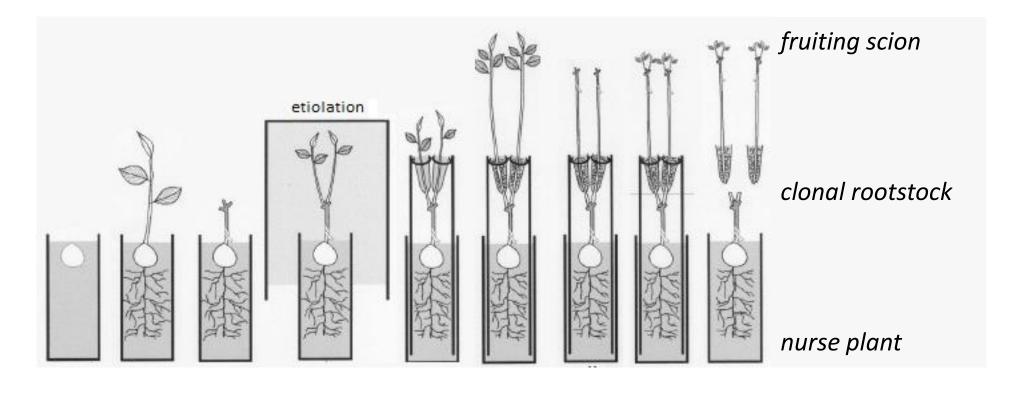
Adventitious Rooting

miR160 → Root induction

Phase Change and Flowering

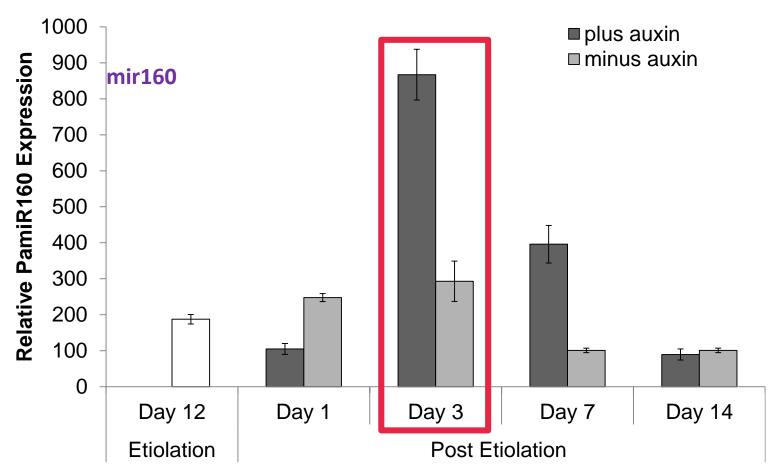
• miR156 \rightarrow inhibits maturation

miR172→ Promotes maturation and


flowering

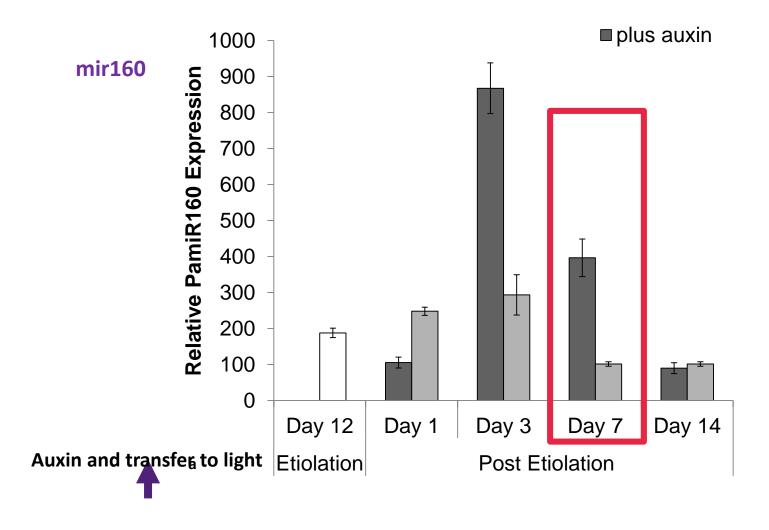
Clonal Propagation and AR

Is miR160 involved in AR and if yes, when?



It All Happens At Day 3

	Treatment	% Rooted	Replicates
а	Etiolated, plus auxin	88.88%	9
b	Etiolated, minus auxin	0%	9



а

... And Gone By Day 7

How can we turn this understanding to deliver outcomes:

- Topical Application of RNAs.
- Can we supply mir160 to the plants?
- Will it increase adventitious rooting?
- Will it improve our understanding of AR pathways?

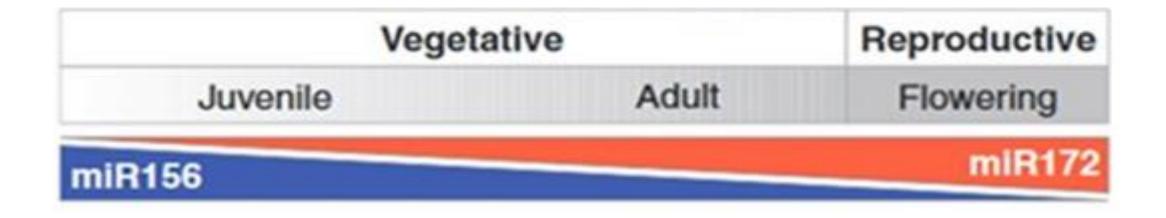
MicroRNA control of Juvenility and Maturity in tropical/subtropical tree crops

ORIGINAL RESEARCH published: 04 June 2019

doi: 10.3389/fpls.2019.00729

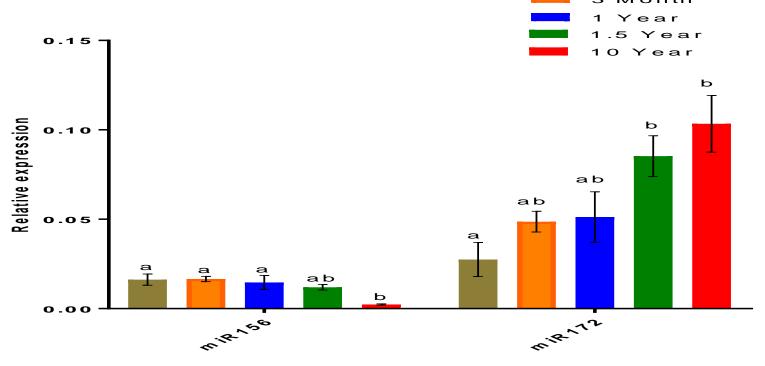
Juvenility and Vegetative Phase Transition in Tropical/Subtropical Tree Crops

Muhammad Umair Ahsan¹, Alice Hayward¹, Vered Irihimovitch², Stephen Fletcher¹, Milos Tanurdzic³, Alexander Pocock³, Christine Anne Beveridge³ and Neena Mitter^{1*}


¹Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia, ²The Volcani Center, Agricultural Research Organization, Institute of Plant Sciences, Rishon LeZion, Israel, ³School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia

Tree Phase transition

- Juvenile to Reproductive.
- miR156 prolongs juvenility and delays flowering
- miR172 Promotes flowering/reproductive phase transition



Vegetative phase transition in Avocado

- High miR156 expression observed in young plants
- miR172 expression increases with age

(Ahsan, Mitter et al., 2019)

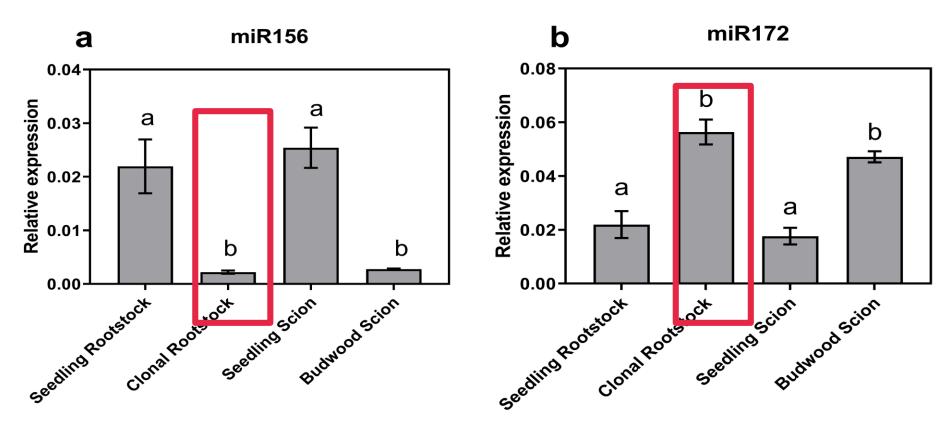
Ahsan et al. BMC Plant Biology (2019) 19:382 https://doi.org/10.1186/s12870-019-1994-5

BMC Plant Biology

RESEARCH ARTICLE

Open Access

Scion control of miRNA abundance and tree maturity in grafted avocado


Muhammad Umair Ahsan¹, Alice Hayward¹, Mobashwer Alam¹, Jayeni Hiti Bandaralage¹, Bruce Topp¹, Christine Anne Beveridge² and Neena Mitter^{1*}

Maturity of the propagation material

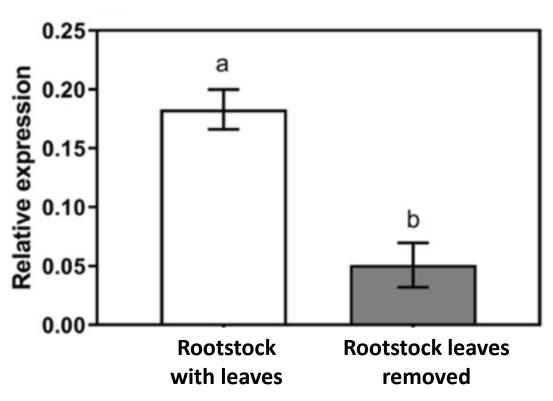
Clonal rootstock – low miR156 and high miR172 → molecularly 'mature'

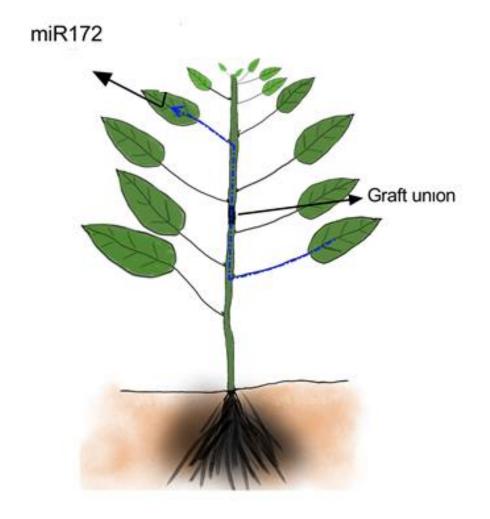
(Ahsan Mitter et al., 2019)

Effect of clonal Rootstock defoliation on gene expression in scion

Defoliated rootstock

With leaves





Leaves promote miR172 in Scion

miR172 expression in scion

Take Home Messages


- MicroRNAs are key players in plant development
- miR160 is involved in AR regulation
- miR156 and miR172 may control maturity and phase change in avocado
- In grafted plants leaf-derived signals from clonal rootstocks affect miR172 status

Cryopreservation of Avocado Shoot Tips for Germplasm Conservation

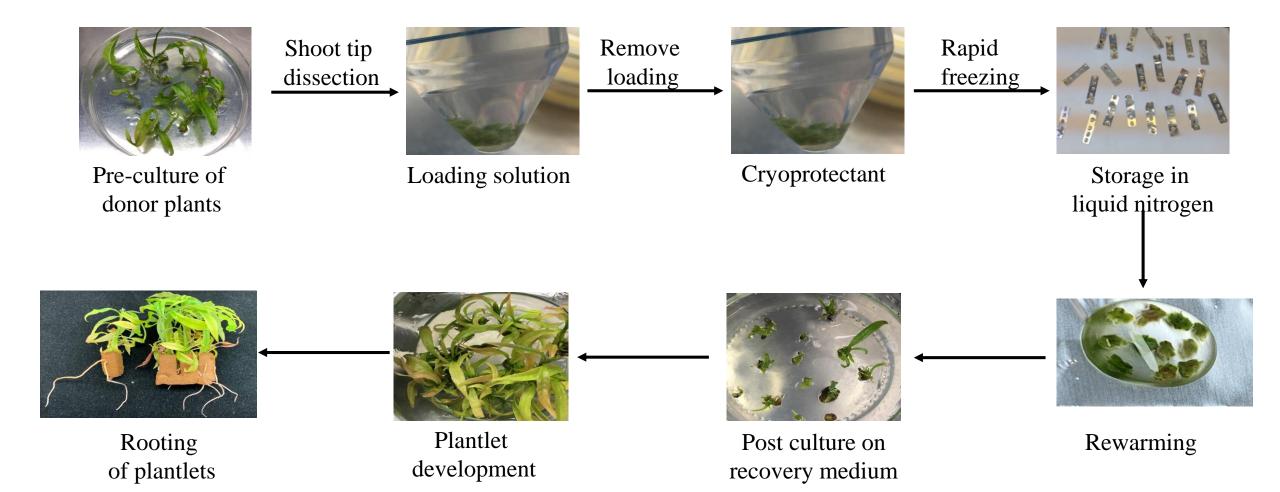
Avocado seeds are recalcitrant and heterozygous.

Recalcitrant seeds do not survive freezing and drying, therefore not amenable to seed storage.

Avocados are open-pollinated crops and seeds are <u>heterozygous</u> and have limited conservation value.

Cryopreservation is the storage of living tissues at ultra-low temperature in liquid nitrogen (-196°C).

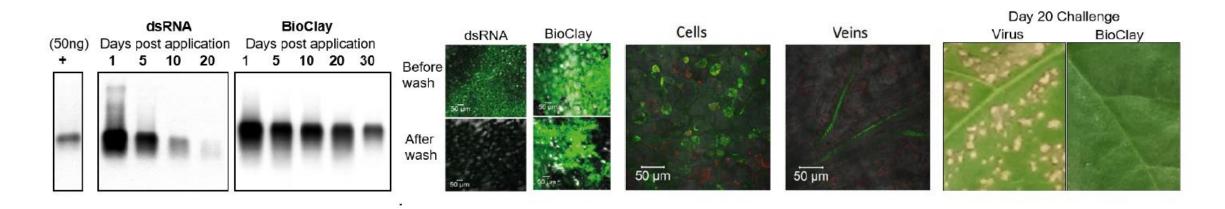
Protocols have been developed for plant species using


- Apices
- Calli
- Cell suspensions
- Seeds
- Somatic embryos
- Zygotic embryos

CRYOBANK FOR AVOCADO GERMPLASM

RNA based Pesticides - BIOCLAY

- > RNA as the biological active ingredient
- Clay particles as delivery agents



ARTICLES

PUBLISHED: 9 JANUARY 2017 | VOLUME: 3 | ARTICLE NUMBER: 16207

Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses

Neena Mitter^{1*}, Elizabeth A. Worrall¹, Karl E. Robinson¹, Peng Li², Ritesh G. Jain¹, Christelle Taochy^{1,3}, Stephen J. Fletcher^{1,3}, Bernard J. Carroll³, G. Q. (Max) Lu^{2,4} and Zhi Ping Xu²*

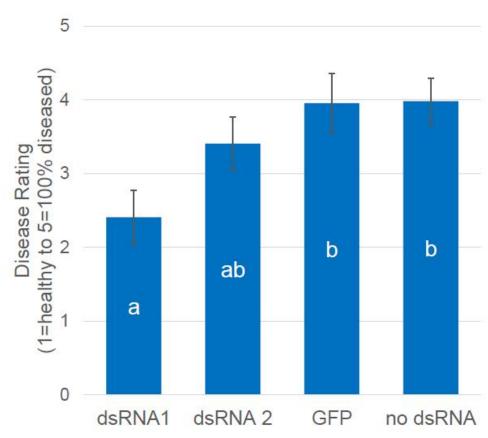
CRICOS code 00025B

BioClay for Tomato Spotted Wilt Virus on Capsicum

Targeting Phytophthora root rot – Lupins as test host

No zoospores

With zoospores


Zoospores + dsRNA shoots = 0.9 cm, roots = 7.6 cm 10/10 seedlings healthy

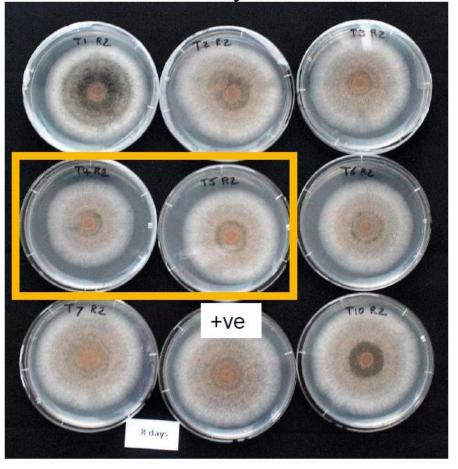
Targeting Phytophthora cinnamomi in pineapple

Two

promising

identified

targets



Targeting Colletotrichum sp.

4 days

+ve

8 days

Avocado fruit bioassay

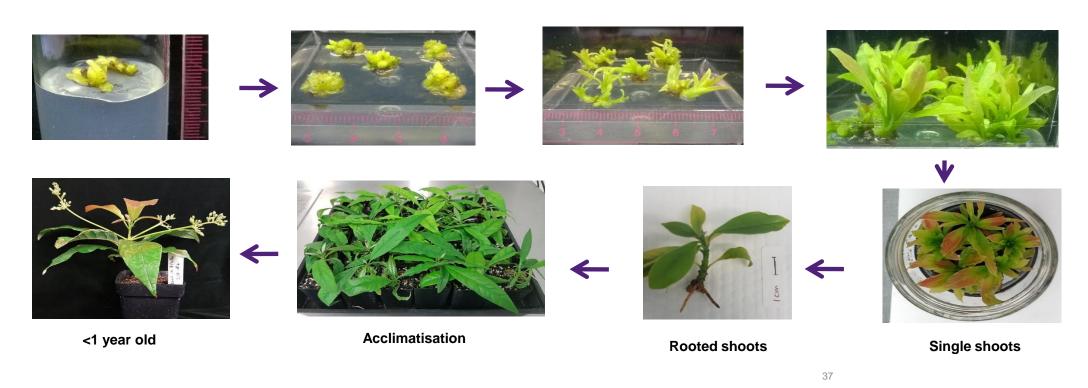
Topical RNA application – NON-GM

In Australia, the Office of the Gene Technology Regulator has legislated

topically-applied RNA is exempt from GMO regulations (Schedule 1A – Techniques that are not gene technology)

Gene Technology Amendment (2019 Measures No. 1) Regulations 2019

This item provides that techniques involving applying RNA to an organism to temporarily induce RNA interference are not gene technology, provided that:


- the RNA cannot be translated into a polypeptide
- the organism's genome sequence cannot be altered as a result, and
- an infectious agent cannot be produced.

AVOCADO PROPAGATION

500 plants from one shoot tip

Mitter Lab: Innovating Avocado

FROM LAB TO NURSERY

NURSERY TO FIELD

Baie Dankie

