

Avocado propagation from lab to orchard

Dr. Jayeni Hiti-Bandaralage

Postdoc Research Fellow
Centre for Horticultural Science,
QAAFI, UQ, Australia
(uqjhitib@uq.edu.au)

Maluma symposium South Africa 11th March 2020

The Team

Prof. Neena Mitter, Dr. Alice Hayward, Mr. Chris O'brien, Prof. Christine Beveridge, Mrs. Amitoj Walia, Dr. Madeleine Gleeson, Mr. Calrence Mok, Mr. Kyle Lamont

Trend of avocado industry

Global production increasing with cultivation expansion

Area harvested increased from 2016 -2017 was over 15,000 ha

Intensive orchard practices

Conventional planting 400 plants/ha to high density planting 800 plants/ha to ultra high density

>1200 plants/ha

1.25 m X 1.25 m in Chile

The current industry challenge

Sourcing avocado plants for orchard expansion and new orchard establishment

2-3 year wait-lists for new plants Cost and time intensive propagation Diseases and biosecurity

Rootstock Propagation

Seedling rootstocks

- Availability of seeds
- Seasonal
- Large orchard maintenance to obtain rootstock seeds
- Resource intensive
- Pest and disease risks
- > A\$22

Clonal Rootstock

- Depend on seed & budwood; seasonal
- Large orchard maintenance to obtain rootstock seeds
- Depend on grafting success
- Resource intensive
- Pest and disease risks
- >A\$42

Waste of nutritious food (tonnes of fruit/year/nursery)

Tissue culture

"Totipotency of cells"

- Allows mass propagation of true-to-type plants
- Not seasonal
- Disease free
- No stress from outside environment
- Suitable as an industrial application
- Easy to export

Overall Objective

Develop a tissue culture based propagation system for avocado

Key considerations

- Propagation of mature cuttings
- High multiplication rate
- Produce high quality plants (pest & disease free)
- Practical procedure applicable at industrial scale

Avocado tissue culture techniques

Nodal culture (Direct organogenesis)

Meristem /Shoot tip culture (Direct organogenesis)

Regeneration through callus culture (Indirect organogenesis)

(Hiti-Bandaralage et al., 2017)

Avocado tissue culture

45 – 50 years of research in global sphere

Highly recalcitrant woody plant species, specially when mature

Problems

- Very low multiplication
- Loss of vigour in culture
- Failures for long term culture
- Poor plant quality
- Very difficult to root in vitro
- Low acclimatisation success
- Problems in practicality for large scale production

Hiti-Bandaralage et al. 2017

The Challenge

Numerous optimisations for every stage in tissue culture

- Sterilisation of explants
- Basal nutrient media
- Hormone levels/combinations/mode of application/exposure
- Additives promote growth + reduce dieback/necrosis
- Type of vessel
- Incubation conditions (light, temp, CO₂)

Nodal culture

Nodal culture

Multiplication is limited

Cultivar	Total multiplication (culture period)		
'Velvick'	10.68 (12 months)		
'Reed'	3.48 (6 months)		
'Kidd'	21. 78 (12months)		

Reed (80% - 8 wks)

Velvick (50% - 12 wks) Kidd (90% - 4 wks)

Meristem culture

Culturing of extreme apical tissues (ideally <0.1 mm) with no visible leaf primordia (Lane., 1978)

Reed

<1 year old

Acclimatised 6 wks (>95% success)

Single shoots

Rooting (90% success at 4 weeks)

Velvick

Lab to Nursery

Reed

Nursery to Field

- · Three small trials
- Started in 2017
- Ungrafted/grafted TC rootstocks (Reed, Velvick)
- Rootstock comparison
 - TC
 - Seeding
 - Conventional clonal

Ready for planting

Reed TC

Velvick TC

Reed TC

2 years

Small field trials – Duranbah, NSW

- Three small trials
- Started in 2017
- Ungrafted/grafted TC rootstocks (Reed, Velvick)
- Rootstock comparison
 - TC
 - Seeding
 - Conventional clonal

TC Velvick 2nd year

Hass/TC Velvick second year

Harvest day, 2019 April, 2 years from planting

Large field trials – commercially managed orchards

Donovan Farms, Bundaberg, AUS

Planted

Site

No of

N=5

Special

Commercially managed field trials – productivity evaluation

Cultivar

	date	tested	•	plants	growth condition	
Childers	April 2018	Hass/TC reed	Hass/A10 Hass/Seedling Reed	N=43	-	C
Lakeland, NQLD 1	September 2018	Maluma /TC reed	Maluma/Seedling Reed	N=50	Trellis, Shade netting	
Busselton, WA	October 2018	Hass/TC Reed	Hass/Seedling Reed Hass/clonal Reed	N=50 N=5	-	
Lakeland	November 2018	Maluma /TC Reed	Maluma/Seedling Reed	N=50	-	
Pemberton ,WA	November 2018	Hass/TC Reed	Hass/Seedling Reed	N=50	-	

Hass/clonal Reed

Comparison

Childers, QLD

Lakeland 1, NQLD

Lakeland 2, NQLD

Pemberton, WA

Busselton, WA

Childers QLD

- Hass/Reed, Hass/a10
- 2 years old in April 2020
- First fruit picked April 2019

Busselton WA

- Hass/Reed
- 1.5 years old in April 2020

Pemberton WA

- Hass/Reed
- 1.5 years old in May 2020

Lakeland FN QLD

- Maluma/Reed
- Trellis, shade netting
- 1.5 years old in April 2020

meristem seedling

Lakeland FN QLD

- Maluma/Reed
- Conventional
- 1.5 years old in May 2020

At QAAFI Mitter lab tissue culture...

WORLD'S FIRST avocado tissue culture technology – 500 plants from one shoot tip in 8-12 months

Commercial licence negotiated

Production capacity - 500,000 plants in 500 sq meters

Disease-free new breeds

Land-free

Year-round

Elite

Avocado Tissue Culture; Industry Stakeholder's Day 25th March 2020, Childers, Queensland, Australia

https://www.eventbrite.com.au/e/avocado-tissue-culture-industry-stakeholders-day-tickets-91284156369

Acknowledgements

This project is jointly supported by the Department of Agriculture and Fisheries and the University of Queensland;

Key element of this project has been funded by Australian Research Council linkage grant, Advance Queensland Industry Partnership grant, Australian Postgraduate Award and industry partners; Delroy Orchards, Jasper Farms, Andersons Horticulture, Mack farms, Donovan family investments and L & R Collins.

